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ABSTRACT 

A mathematical branch of functional analysis that analyzes linear operators on 

function spaces. The study of linear operators in topological vector spaces, such as Hilbert 

spaces, and their features is known as operator theory. In this paper, we look at the 

factorization of k-Posinormal operators on Hilbert space. We expand the Posinormal operator 

to the k-Posinormal operator, which acts on a Hilbert space, and present some of its theorems 

as well as the k-Posinormal operator's behavior during factorization.  

Keywords: Posinormal, k-Posinormal, coposinormal, heminormal. 

1. INTRODUCTION 

  Let H be a complex Hilbert space and B(H) denote the algebra of all bounded linear 

operators on H. A vector space that has an inner product that generates a function 

representing distance for which the space is a complete metric space is known as a Hilbert 

space. A Banach space is a specific instance of a Hilbert space. 

A study on Hilbert space operators are very significant in analysis and applications in 

quantum mechanics. In quantum mechanics the Hilbert space and their properties provide the 

correct mathematical tool to formalize the law of quantum mechanics and observables of a 

system are represented by a space of linear operators on a Hilbert space H.  

Here, the linear operator as k-posinormal. We explore some theorems using k-

Posinormal in factorization.   

 

2. DEFINITION    

 An operator T in a Hilbert space  H  is said to be  k - Posinormal  if   ≤  c
2
 

   for some c  0 and  k  is a natural number. 

Using this definition, we proved some theorems in factorization. 

 

2.1 SOME DEFINITIONS    

 Posinormal Operator: 

  An operator A  B(H) is called Posinormal,   if      ≤    c
2
    for some c > 0 [1]. 

 k-Posinormal Operator: 

An operator A  B(H) is called k-Posinormal, if     ≤    c
2
    for Some  

c > 0, where  k  is  a  positive  integer [2]. 
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 Hyponormal Operator: 

  An operator A  B(H) is called Hyponormal,  if 𝐴*𝐴 ≥ 𝐴𝐴*
 .[4]. 

 M – Parahyponormal Operator: 

An operator T in a Hilbert space H is M – Parahyponormal, if   M  

for every unit vector x in H. 

 Heminormal Operator: 

An operator A  B(H) is called Heminormal, if T is hyponormal and T∗T commutes 

with TT∗. 

 Class A: 

  An operator T belongs to class A, if and only if (T∗|T|T)1/2 ≥ T∗T. 

we can see from the definitions, as expected, 

For  p = 1, 

(p, k) – Posinormal  =   k – Posinormal [3] 

For  k = 1, 

k – Posinormal   =   1 – Posinormal   =  Posinormal. 

Also we can easily verify that, 
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3. K - POSINORMAL OPERATORS ON HILBERT SPACE  

3.1 THEOREM   

Let A, B and S be operators, then the operator T = Ak/2S is  a k- posinormal operator if     

1. B ≥ A ≥ 0 

2. kSk ≤ 1 

3. B = c2S∗ Ak S. 

Proof   

An operator T is k-posinormal,   if      ≤   c
2
  . 

Suppose that there exist operators A , B and S which satisfies the above three conditions.  

Then, 

c2(Ak/2S)∗(Ak/2S) − (Ak/2S)(Ak/2S)∗  

=   c2(S∗Ak/2Ak/2S) − (Ak/2SS∗Ak/2) 

=   c2 S∗ Ak S − Ak/2 SS∗ Ak/2  

=  B − Ak/2 SS∗ Ak/2          [from(3) condition] 

                                       A − Ak/2 SS∗ Ak/2 

                               =    Ak/2(I – SS*)Ak/2 
≥   0 

Therefore ,  c2(Ak/2S)∗ (Ak/2S)    ≥      (Ak/2S)(Ak/2S)∗ 

 Ak/2S is k-posinormal. 

3.2 THEOREM 

If T is a k-posinormal operator, then there exist operators A, B and S which satisfy, 

1. B ≥ A ≥ 0 

2.  ≤ 1 

3. B = c2S∗ Ak S  

then T can be written in the form T = Ak/2S. 

Proof   

Since T is a k-posinormal operator,  

          ≤  c
2 

 . 

Let T ∗ = U (T T ∗)k/2 be a polar decomposition of T ∗,   A = TT ∗ and B = c2T ∗T. 

Then, since T is k-posinormal we have B ≥ A ≥ 0. 

Also,           B =   c2 T ∗T  

    =   c2   U   (T T ∗)k/2 (T T ∗)k/2   U ∗ 

    =   c2 U (T T ∗)
k
  U ∗ 

    =   c2 U A
k
 U  

If we consider B =  U*, Then  kSk ≤  1,    B =  c
2
  S* A

k
 S  and 
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T =  (T T ∗)k/2 U ∗ =  Ak/2S. 

3.3 THEOREM   

An operator T = Ak/2S which satisfies  

1. B ≥ A ≥ 0 

2. kSk ≤ 1 

3. B = c2 S∗ Ak S is coposinormal, i.e., T ∗ is posinormal. 

Proof  

T ∗ is  posinormal. if,   T ∗T ≤ c2T T ∗ 

c2 TT ∗ −   T ∗T = c2 (Ak/2S)(Ak/2S)* −   (Ak/2S)* (Ak/2S) 

   = c2 Ak/2 S S*Ak/2 –  S* Ak S 

    =   c2 Ak/2 S S*Ak/2   −     

    =   c2 Ak/2 S S*Ak/2   −   Ak    [from(3) condition] 

   =   Ak/2 [c2 S S*   − I ] Ak/2 

   ≥    0 

 T * is posinormal. 

3.4 THEOREM  

If A, B, S are normal operator then T  = Ak/2  S which satisfies 

1. B  ≥ A ≥ 0 

2. kSk ≤ 1 

3. B = c2 S* Ak S is heminormal.    

Proof    

A normal operator T is heminormal if T is hyponormal and T * T commutes with T T *. 

Teishiro Saito [7] have already proved T is hyponormal. 

T *TTT * = (Ak/2S)*(Ak/2S)(Ak/2S)(Ak/2S)* 

= S* Ak/2 Ak/2S Ak/2SS*Ak/2                 

=  S* Ak S Ak/2SS*Ak/2 

=      Ak/2SS*Ak/2          [from(3) condition] 

TT*T*  T  =   (Ak/2S)(Ak/2S)* (Ak/2S)* (Ak/2S) 

=   Ak/2 SS*Ak/2 S* Ak S   

=     Ak/2 SS* Ak/2         [From(3) condition] 

               T* TT T* = T T*T* T 
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         T  is heminormal. 

3.5 THEOREM   

An operator T = Ak/2S which satisfies  

1. B ≥ A ≥ 0 

2. kSk ≤ 1 

3. B = c2S*  S  is of class A. [8], [9]. 

Proof   

An operator T is of class A if,     (T * |T | T )k/2   ≥     T *T 

((Ak/2S)* Ak/2S
 
Ak/2S)k/2 −   (Ak/2S)* (Ak/2S) 

  (S* Ak/2(Ak/2S) S*Ak/2Ak/2 S)k/2  −   S*A
K
 S 

 (S*A
k
 SS*AS)k/2 – S*A

k
 S 

 ≥   0 

 T is of class A. 
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